Games with stage duration and public signals

Zero-Sum Stochastic Games with Vanishing Stage Duration and Public Signals

Ivan Novikov

Université Paris-Dauphine, CEREMADE

28/05/2024

Stoch. games with perfect observ. of the state $\bullet{\circ}{\circ}{\circ}{\circ}{\circ}$

Games with stage duration 000000000

Games with stage duration and public signals

Table of contents

Zero-sum stochastic games with perfect observation of the state

Stochastic games with stage duration

Stochastic games with stage duration and public signals

Games with stage duration and public signals

Zero-sum stochastic games with perfect observation of the state (1)

A zero-sum stochastic game (with perfect observation of the state) is a 5-tuple (Ω, I, J, g, P) , where:

- Ω is a non-empty set of states;
- *I* is a non-empty set of actions of player 1;
- J is a non-empty set of actions of player 2;
- $g: I \times J \times \Omega \rightarrow \mathbb{R}$ is a payoff function of player 1;
- $P: I \times J \times \Omega \rightarrow \Delta(\Omega)$ is a transition probability function.

We assume that I, J, Ω are finite.

 $\Delta(\Omega) :=$ the set of probability measures on Ω .

Zero-sum stochastic games with perfect observation of the state (2)

A stochastic game (Ω, I, J, g, P) proceeds in stages as follows. At each stage *n*:

- 1. The players observe the current state ω_n ;
- 2. Players choose their mixed actions, $x_n \in \Delta(I)$ and $y_n \in \Delta(J)$;
- Pure actions i_n ∈ I and j_n ∈ J are chosen according to x_n ∈ Δ(I) and y_n ∈ Δ(J);
- 4. Player 1 obtains a payoff $g_n = g(i_n, j_n, \omega_n)$, while player 2 obtains payoff $-g_n$;
- 5. The new state w_{n+1} is chosen according to the probability law $P(i_n, j_n, \omega_n)$.

The above description of the game is known to the players.

Strategies and total payoff

- Strategies σ, τ of players consist in choosing at each stage a mixed action;
- The players can take into account the previous actions of players, as well as the current and previous states.

•
$$\lambda$$
-discounted total payoff: $E^{\omega}_{\sigma,\tau}\left(\lambda\sum_{i=1}^{\infty}(1-\lambda)^{i-1}g_i\right);$

- Depends on $\lambda \in (0, 1)$, initial state ω , and strategies of the players;
- Value $v_{\lambda} : \Omega \to \mathbb{R}$:

$$\begin{split} v_{\lambda}(\omega) &= \sup_{\sigma} \inf_{\tau} E^{\omega}_{\sigma,\tau} \left(\lambda \sum_{i=1}^{\infty} (1-\lambda)^{i-1} g_i \right) \\ &= \inf_{\tau} \sup_{\sigma} E^{\omega}_{\sigma,\tau} \left(\lambda \sum_{i=1}^{\infty} (1-\lambda)^{i-1} g_i \right). \end{split}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ のへで 5/44

Stoch. games with perfect observ. of the state $\texttt{0000} \bullet$

Games with stage duration 000000000

Games with stage duration and public signals

Limit of λ -discounted game Γ^{λ}

•
$$v_{\lambda}(\omega) = \sup_{\sigma} \inf_{\tau} E^{\omega}_{\sigma,\tau} \left(\lambda \sum_{i=1}^{\infty} (1-\lambda)^{i-1} g_i \right);$$

- One can ask: what happens if players become more and more patient? I.e., players are willing to wait a lot to obtain a big payoff;
- Mathematically, it means that $\lambda \rightarrow 0$;
- Thus, one is interested in the uniform (in ω) limit $\lim_{\lambda\to 0} v_{\lambda}(\omega)$;
- The limit always exists in the finite framework, but may fail to exits in a more general setting.

Stoch. games with perfect observ. of the state ${\scriptstyle 00000}$

Games with stage duration •00000000 Games with stage duration and public signals

Table of contents

Zero-sum stochastic games with perfect observation of the state

Stochastic games with stage duration

Stochastic games with stage duration and public signals

Games with stage duration 000000000

Games with stage duration and public signals

Kernel

• Kernel
$$q: I imes J imes \Omega o \mathbb{R}^{|\Omega|}.$$

$$q(i,j,\omega)(\omega') = \begin{cases} P(i,j,\omega)(\omega') & \text{if } \omega \neq \omega'; \\ P(i,j,\omega)(\omega') - 1 & \text{if } \omega = \omega'. \end{cases}$$

- Recall that P(i, j, ω)(ω') is the probability that the next state is ω', if the current state is ω and players' actions are (i, j);
- Hence the closer kernel q is to 0, the more probable it is that the next state coincides with the current one.

Stochastic games with stage duration

- Consider a family of stochastic games G_h, parametrized by h ∈ (0, 1];
- *h* represents stage duration;
- Players now play at times 0, h, 2h, ..., instead of playing at times 0, 1, 2, ...;
- State space Ω and action spaces I and J of player 1 and player 2 are independent of h;
- Payoff function g_h of player 1 and kernel q_h depend on h.

Games with stage duration and public signals

◆□▶ < □▶ < 三▶ < 三▶ < 三 < つへで 10/44</p>

Stochastic games with stage duration

- Payoff $g_h = hg$;
- Kernel $q_h = hq$;
- *h* = 1: "Usual" stochastic game;
- When h small, g_h is close to zero (players receive almost nothing each turn), and q_h is close to zero (the next state with a high probability will be the same).

Stoch. games with perfect observ. of the state ${\scriptstyle 00000}$

Games with stage duration 000000000

Games with stage duration and public signals

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで 11/44

```
Comparison (1)
```

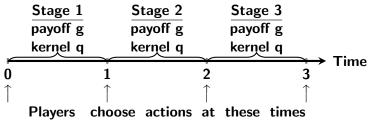


Figure: "Usual" stochastic game: duration of each stage is 1

Games with stage duration and public signals

Comparison (2)

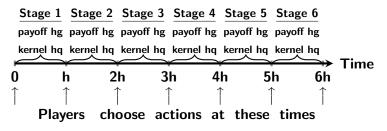


Figure: Stochastic game with stage duration h: stage payoff and kernel are proportional to h

Discounted games with stage duration

 For a game with stage duration h, the total payoff is (depending on the discount factor λ, initial state ω, and strategies σ, τ of players)

$$E^{\omega}_{\sigma, au}\left(\lambda\sum_{k=1}^{\infty}(1-\lambda h)^{k-1}(g_k)_h
ight);$$

- Why such a choice? Easy explanation:
- The total payoff is λ-discounted game with stage duration 1 is
 E^ω_{σ,τ} (λ Σ[∞]_{k=1}(1 − λ)^{k-1}g_k). The total payoff of λ-discounted
 game with stage duration h is E^ω_{σ,τ} (Σ[∞]_{k=1} λh(1 − λh)^{k-1}g_k);
- So, it may be seen as a game with discount factor λh. I.e., the discount factor is proportional to h, just as the payoff g and the kernel q.

Games with stage duration and public signals

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ ○ ○ ○ 14/44

Real meaning behind the total payoff of the game with stage duration h

- Total payoff: $E^{\omega}_{\sigma,\tau}\left(\lambda\sum_{k=1}^{\infty}(1-\lambda h)^{k-1}(hg_k)\right);$
- When h is small, the total payoff of the λ-discounted stochastic game with stage duration h is close to the total payoff of the analogous λ-discounted continuous-time game;

Games with stage duration and public signals

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで 15/44

Papers about games with stage duration

- "Stochastic games with short-stage duration" by Abraham Neyman (2013);
- "Operator approach to values of stochastic games with varying stage duration" by Sylvain Sorin and Guillaume Vigeral (2016).

Discounted games with stage duration (main properties)

- We denote by $v_{h,\lambda}$ the value of the game with total payoff $E^{\omega}_{\sigma,\tau} \left(\lambda \sum_{k=1}^{\infty} (1-\lambda h)^{k-1} (g_k)_h\right);$
- Main question: What happens with $v_{h,\lambda}$ when $h \rightarrow 0$?

Proposition (A. Neyman)

 $\lim_{h\to 0} v_{h,\lambda}$ exists and is a unique solution of a functional equation.

Proposition (S. Sorin, G. Vigeral)

 $\lim_{\lambda\to 0} \lim_{h\to 0} v_{h,\lambda} \text{ exists if and only if } \lim_{\lambda\to 0} v_{1,\lambda} \text{ exists, and in}$ the case of existence we have $\lim_{\lambda\to 0} \lim_{h\to 0} v_{h,\lambda} = \lim_{\lambda\to 0} v_{1,\lambda}$.

lim_{λ→0} v_{1,λ} should be considered as the limit value of the discrete-time stochastic game, whereas lim_{λ→0} lim_{h→0} v_{h,λ} should be considered as the limit value of analogous continuous-time game.

Games with stage duration 000000000

Table of contents

Zero-sum stochastic games with perfect observation of the state

Stochastic games with stage duration

Stochastic games with stage duration and public signals

Games with stage duration 000000000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで 18/44

Stochastic Games with Public Signals (1)

- Now players cannot perfectly obsesserve the current state;
- Players know the initial probability distribution on the states and some information about the current state.

Games with stage duration and public signals

Stochastic Games with Public Signals (2)

A zero-sum stochastic game with public signals is a 7-tuple $(A, \Omega, f, I, J, g, P)$, where:

- A is a non-empty set of signals;
- Ω is a non-empty set of states;
- $f: \Omega \to A$ is a partition of Ω ;
- *I* is a non-empty set of actions of player 1;
- J is a non-empty set of actions of player 2;
- $g: I \times J \times \Omega \rightarrow \mathbb{R}$ is stage payoff function of player 1;
- $P: I \times J \times \Omega \to \Delta(\Omega)$ is the transition probability function. We assume that I, J, Ω, A are finite.

Stochastic Games with Public Signals (3)

The game $(A, \Omega, f, I, J, g, P)$ proceeds in stages as follows. At each stage *n*:

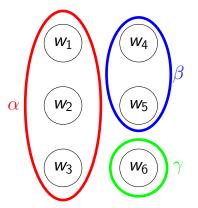
- 1. The current state is ω_n . Players do not observe it, but they observe the signal $\alpha_n = f(\omega_n) \in A$ and the actions of each other at the previous stage;
- 2. Players choose their mixed actions, $x_n \in \Delta(I)$ and $y_n \in \Delta(J)$;
- Pure actions i_n ∈ I and j_n ∈ J are chosen according to x_n ∈ Δ(I) and y_n ∈ Δ(J);
- 4. Player 1 obtains a payoff $g_n = g(i_n, j_n, \omega_n)$, while player 2 obtains payoff $-g_n$;
- 5. The new state w_{n+1} is chosen according to the probability law $P(i_n, j_n, \omega_n)$. The new signal is $\alpha_{n+1} = f(\omega_{n+1})$.

The above description of the game is known to the players. Players do not observe the payoff.

Games with stage duration 000000000

Games with stage duration and public signals

An example of the partition function f



There are 3 public signals, and $f(w_1) = f(w_2) = f(w_3) = \alpha$, $f(w_4) = f(w_5) = \beta$, $f(w_6) = \gamma$.

< □ ▶ < @ ▶ < \ > ▲ \ > \ \ = り \ ○ 21/44

Games with stage duration 000000000

Games with stage duration and public signals

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ○ ○ ○ 22/44

Stage duration

- We still can consider games with stage duration *h* in this new setting;
- Payoff $g_h = hg$;
- Kernel $q_h = hq$;
- State space Ω, signal set A, partition function f, and action spaces I and J of player 1 and player 2 are independent of h;
- The total payoff is still $E^{\omega}_{\sigma,\tau} \left(\lambda \sum_{k=1}^{\infty} (1 \lambda h)^{k-1} (g_k)_h \right);$
- $v_{h,\lambda}$ is the value of the game with such a total payoff.

Stoch. games with perfect observ. of the state

Games with stage duration 000000000

Games with stage duration and public signals

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで 23/44

First result

Theorem

In the state-blind case, the uniform limit $\lim_{h\to 0} v_{h,\lambda}$ exists and is a unique viscosity solution of a partial differential equation

$$\lambda \mathbf{v}(\mathbf{p}) = \mathit{val}_{I imes J}[\lambda g(i,j,\mathbf{p}) + \langle \mathbf{p} * q(i,j),
abla \mathbf{v}(\mathbf{p})
angle],$$

where

$$egin{aligned} &f(p*q(i,j))\left(\omega
ight) &:= \sum_{\omega'\in\Omega} p(\omega')\cdot q(i,j,\omega')(\omega) \ &\langle f(\cdot),g(\cdot)
angle &:= \sum_{x\in X} f(x)g(x). \end{aligned}$$

Games with stage duration 000000000

Games with stage duration and public signals

Sketch of the proof

- The proof is similar to the proof of analogous result in the paper of Sylvain Sorin (2018) "Limit Value of Dynamic Zero-Sum Games with Vanishing Stage Duration";
- Namely, we consider the family {v_{h,λ}(p)}_{h∈(0,1]}. It can be proven that it is equilipschitz-continuous and equibounded;
- Hence by the Arzelà–Ascoli theorem the limit $\lim_{h\to 0} v_{h,\lambda}(p)$ has at least one accumulation point;
- Afterwards we write the Shapley equation to prove that each accumulation point is a viscosity solution of the above differential equation;
- It can be proven that this differential equation has a unique solution.

Limit value in games with public signals

- We consider $\lim_{\lambda \to 0} v_{h,\lambda}$;
- Even in finite setting, $\lim_{\lambda \to 0} v_{h,\lambda}$ may not exist;
- First example of inexistence is in the paper of Bruno Ziliotto (2016) "Zero-sum repeated games: Counterexamples to the existence of the asymptotic value and the conjecture maxmin = lim v_n";
- A similar counterexample is in the paper of Bruno Ziliotto and Jérôme Renault (2020) "Hidden stochastic games and limit equilibrium payoffs";
- We now consider a game which is equivalent to the game from the latter paper.

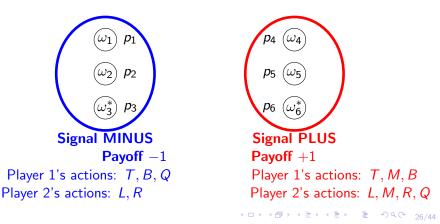
Games with stage duration 000000000

Games with stage duration and public signals

Second result (1)

Theorem

There is a stochastic game G with public signals in which the uniform limit $\lim_{\lambda\to 0} \lim_{h\to 0} v_{h,\lambda}$ exists, but the pointwise limit $\lim_{\lambda\to 0} v_{1,\lambda}$ does not exist.



State ω_5 :

M

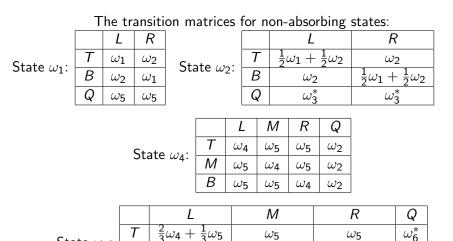
В

 ω_{5}

 ω_5

Games with stage duration and public signals

Second result (2)



 ω_5

 $\frac{2}{3}\omega_4 + \frac{1}{3}\omega_5$

 ω_5

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ● ⑦ Q ○ 27/44

 $\frac{1}{2}\omega_{5}$

 ω_6^*

 ω_6^*

 ω_5

 ω_{5}

 $\frac{2}{3}\omega_{4} +$

Stoch. games with perfect observ. of the state 00000

Games with stage duration 000000000

Games with stage duration and public signals

Informal proof (1)

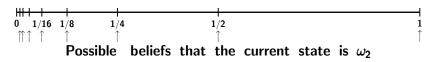
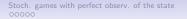


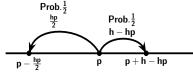
Figure: Discrete case (i.e. stage duration is h = 1). Possible beliefs of player 1 that the current state is ω_2 if player 2 plays optimally. As λ becomes smaller, player 1 can wait longer and longer to achieve higher probabilities.

- If the current signal is LEFT, then the smaller is the discount factor λ, the smaller is player 1 can make his belief that the current state is ω₂;
- Analogously, if the current signal is RIGHT, then the smaller is λ, the smaller is player 2 can make his belief that the current state is ω₅;
- Because of that, there is an oscillation when $\lambda \to 0$.



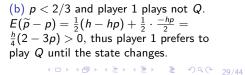
Games with stage duration and public signals

Figure: Continuous case (i.e. $h \approx 0$) with small λ . With prob. p < 2/3 that the current state is ω_2 , player 1 should immediately start playing Q. Otherwise, his belief \tilde{p} will start to increase until it becomes $\tilde{p} = 2/3$, which is bad for player 1. With prob. $p \ge 2/3$ that the current state is ω_2 , player 1 can very quickly decrease his belief \tilde{p} until it becomes $\tilde{p} \approx 2/3$, which is good for him.



 $\begin{array}{c|c} Prob.\frac{1}{2} & Prob.\frac{1}{2} \\ \hline h - hp \\ \hline p - \frac{hp}{2} & p & p + h - hp \end{array}$

(a) p > 2/3 and player 1 plays not Q. $E(\tilde{p} - p) = \frac{1}{2}(h - hp) + \frac{1}{2} \cdot \frac{-hp}{2} = \frac{h}{4}(2 - 3p) < 0$, thus if λ is small, then player 1 prefers do not play Q until \tilde{p} is close to 2/3.



Games with stage duration 000000000

Games with stage duration and public signals

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 30/44

```
Informal proof (3)
```

- Thus very there is a threshold p = 2/3 which player 1 cannot cross;
- So, the state is going to get absorbed with prob. 2/3;
- Similarly, there is a threshold p = 3/4 which player 2 cannot cross;
- So, the state is going to get absorbed with prob. 3/4;
- Thus there is no oscillation as $\lambda \rightarrow 0$.

Games with stage duration and public signals

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ ○ ○ 31/44

The limit $\lim_{\lambda\to 0} v_{1,\lambda}$ does not exist (1)

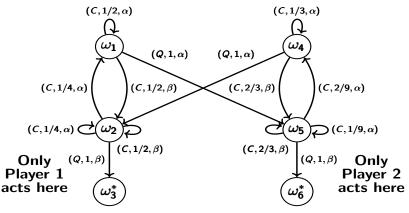
A (more general) zero-sum stochastic game with public signals is a 7-tuple $(A, \Omega, f, I, J, g, P)$, where:

- A is a non-empty set of public signals;
- Ω is a non-empty set of states;
- *I* is a non-empty set of actions of player 1;
- J is a non-empty set of actions of player 2;
- $g: I \times J \times \Omega \rightarrow \mathbb{R}$ is stage payoff function of player 1;
- $P: I \times J \times \Omega \to \Delta(\Omega \times A)$ is the transition probability function.

Games with stage duration 000000000

Games with stage duration and public signals

The limit $\lim_{\lambda\to 0} v_{1,\lambda}$ does not exist (2) Auxiliary game \tilde{G} with discounted value \tilde{v}_{λ} .



Payoff -1

Payoff +1

The arrow from state s_1 to the state s_2 with label (X, p, γ) tells that if player that controls state s_1 chooses action X, then with probability p he goes to state s_2 and receives signal γ .

Games with stage duration 000000000

Games with stage duration and public signals

▲□▶▲□▶▲□▶▲□▶ ■ のへで 33/44

The limit $\lim_{\lambda\to 0} v_{1,\lambda}$ does not exist (3)

Theorem

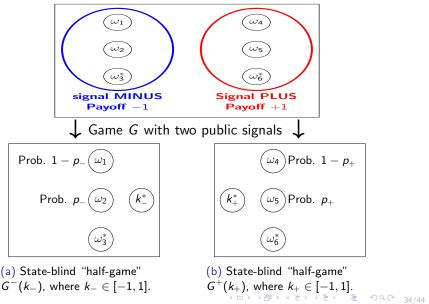
There is a game in which the uniform limit $\lim_{\lambda\to 0} \lim_{h\to 0} v_{h,\lambda}$ exists, but the pointwise limit $\lim_{\lambda\to 0} v_{1,\lambda}$ does not exist.

- One can prove that $\tilde{v}_{\lambda}(p) = v_{1,\lambda}(p)$. (e.g. by writing the Shapley equation for both games).
- The article "Hidden stochastic games and limit equilibrium payoffs" (Jérôme Renault and Bruno Ziliotto, 2020) proves that $\lim_{\lambda \to 0} \tilde{v}_{\lambda}(p)$ does not exist.

Games with stage duration

Games with stage duration and public signals

The limit $\lim_{\lambda\to 0} \lim_{h\to 0} v_{h,\lambda}$ exists (1)



Games with stage duration and public signals

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ● ■ • • ○ Q ○ 35/44

The limit $\lim_{\lambda\to 0} \lim_{h\to 0} v_{h,\lambda}$ exists (2)

- We only need to find the values v⁻_{h,λ}(k, p) and v⁺_{h,λ}(k, p) of these two "half-games"!
- In this case we can deduce $\lim_{\lambda\to 0} \lim_{h\to 0} v_{h,\lambda}$ for initial states ω_2 and ω_5 by solving a system of two equations with variables k_- and k_+ . We have $\begin{cases} v_{h,\lambda}(\omega_2) = v_{h,\lambda}^-(v_{h,\lambda}(\omega_5),\omega_2) \\ v_{h,\lambda}(\omega_5) = v_{h,\lambda}^+(v_{h,\lambda}(\omega_2),\omega_5) \end{cases}$
- Later we can find lim_{λ→0} lim_{h→0} v_{h,λ}(p) for any initial p by replacing k_− or k₊ with values that were just found.

Games with stage duration and public signals

The limit $\lim_{\lambda\to 0} \lim_{h\to 0} v_{h,\lambda}$ exists (3)

Denote by $v_{h,\lambda}^{-}(k,p)$ the value of the game $G^{-}(k)$ with initial state ω_2 (prob. p) or ω_1 (prob. 1-p);

Lemma

For any $p \in [0,1]$ and any $k \in [-1,1]$ we have

$$v_{h,\lambda}^-(k,p)=(k+1)v_{h,\lambda}^-(0,p)+k.$$

Proof: Since $k \ge -1$, any optimal strategy in the game $G^-(0)$ is also optimal in the game $G^-(k)$. Thus there exists $\alpha \in [0,1]$ such that we have $v_{h,\lambda}^-(k,p) = \alpha k + (-1)(1-\alpha)$. By taking k = 0, we obtain

$$v_{h,\lambda}^{-}(0,p) = -1 + \alpha \iff \alpha = v_{h,\lambda}^{-}(0,p) + 1.$$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ● ■ • • ○ ● 36/44

Stoch. games with perfect observ. of the state ${\scriptstyle 00000}$

Games with stage duration 000000000

Games with stage duration and public signals

The limit $\lim_{\lambda\to 0} \lim_{h\to 0} v_{h,\lambda}$ exists (4)

- The main question: how to find $\lim_{h\to 0} v_{h,\lambda}^{-}(0,p)$?
- We know that $\lim_{h \to 0} v_{h,\lambda}^-(0,p)$ is a unique solution of

$$\lambda v(p) = \operatorname{val}_{I imes J}[\lambda g(i, j, p) + \langle p * q(i, j),
abla v(p)
angle];$$

- It is not clear how to find the solution of this equation;
- However, if we take

$$w(p) := \begin{cases} -\frac{p+\lambda}{1+\lambda} & \text{, if } p < \frac{4\lambda+2}{4\lambda+3}; \\ -1 + \frac{(4\lambda)^{4\lambda/3}}{(1+\lambda)(3+4\lambda)^{1+(4\lambda/3)}} (3p-2)^{-4\lambda/3} & \text{, if } p \ge \frac{4\lambda+2}{4\lambda+3}. \end{cases}$$

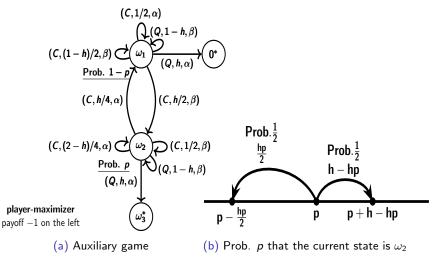
then we can verify that it is a classical solution of this equation.

• We can do the same with the value $v_{h,\lambda}^+(k,p)$ of another "half-game" $G^+(k)$. Stoch. games with perfect observ. of the state $\verb"ooooo"$

Games with stage duration 000000000

Games with stage duration and public signals

How to guess w(p)? (1)



The arrow from state s_1 to the state s_2 with label (X, p, γ) tells that if player plays X, then with prob. p he goes to state s_2 and receives signal γ .

Games with stage duration

Games with stage duration and public signals

How to guess w(p)? (2)

- This new game is equivalent to $G^{-}(0)$;
- Denote by w(p) its value;
- Shapley equation:

$$w(p) = -\lambda h + (1 - \lambda h) \max \left\{ \underbrace{-hp}_{\substack{\text{Player 1 plays } Q, \\ \text{the signal is } \alpha}} + \underbrace{(1 - h)w(p)}_{\substack{\text{Player 1 plays } Q, \\ \text{the signal is } \alpha}} \right\},$$

$$\underbrace{\frac{1}{2}w\left(p - \frac{hp}{2}\right)}_{\substack{\text{Player 1 plays } C, \\ \text{the signal is } \alpha}} + \underbrace{\frac{1}{2}w(p + h - hp)}_{\substack{\text{Player 1 plays } C, \\ \text{the signal is } \alpha}} \right\}.$$
there is $p^* \in [0, 1]$ such that for $p \leq p^*$ player prefers to play

Q, and for $p > p^*$ player prefers to play C. Thus for $p \le p^*$

$$-\lambda h + (1 - \lambda h) (-hp + (1 - h)w(p)) = w(p) \iff$$

$$w(p) = \frac{(h\lambda - 1)p - \lambda}{1 + (1 - h)\lambda} \xrightarrow{h \to 0} - \frac{p + \lambda}{1 + \lambda}.$$

Stoch. games with perfect observ. of the state 00000

Games with stage duration

Games with stage duration and public signals

```
How to guess w(p)? (3)
```

 p^* is an approximate solution of the equation

$$-hp + (1-h)\frac{(h\lambda-1)p-\lambda}{1+(1-h)\lambda} = \frac{(h\lambda-1)\left(p-\frac{hp}{2}\right)-\lambda}{2(1+(1-h)\lambda)} + \frac{(h\lambda-1)(p+h-hp)-\lambda}{2(1+(1-h)\lambda)},$$

from which $p^* = \frac{4\lambda + 2 - 2\lambda h}{4\lambda + 3 - 7\lambda h} \xrightarrow{h \to 0} \frac{4\lambda + 2}{4\lambda + 3}$.

Games with stage duration 000000000

Games with stage duration and public signals

How to guess w(p)? (4)

• For $p \ge p^*$, w(p) is a solution of the equation (in f(p))

$$f(p) = -\lambda h + (1 - \lambda h) \left(\frac{1}{2} f\left(p - \frac{hp}{2}\right) + \frac{1}{2} f(p + h - hp) \right).$$

• if w(p) is differentiable, then

$$w(p) = -\lambda h + (1-\lambda h) \left(\frac{1}{2} \left(w(p) - \frac{1}{2}hp \ w'(p) \right) + \frac{1}{2} \left(w(p) + (h-hp)w'(p) \right) \right) + o(h).$$

Thus we have for small h

$$\left\{egin{aligned} \lambda w(p) &\approx -\lambda - rac{1}{4} p w'(p) + rac{1}{2} (1-p) w'(p), & ext{if } p \in (p^*,1); \ w(p^*) &= rac{-p^*-\lambda}{1+\lambda}. \end{aligned}
ight.$$

from which

$$w(p) = -1 + \frac{(4\lambda)^{4\lambda/3}}{(1+\lambda)(3+4\lambda)^{1+(4\lambda/3)}} (3p-2)^{-4\lambda/3}.$$

Stoch. games with perfect observ. of the state 00000

Games with stage duration 000000000

▲□▶▲圖▶▲圖▶▲圖▶ ■ のへで 42/44

Theorem

There is a stochastic game G with public signals in which the uniform limit $\lim_{\lambda\to 0} \lim_{h\to 0} v_{h,\lambda}$ exists, but the pointwise limit $\lim_{\lambda\to 0} v_{1,\lambda}$ does not exist.

Open question: For the considered above game G, can we say that

- 1. For any fixed $h \in (0,1]$, the limit $\lim_{\lambda \to 0} v_{h,\lambda}$ does not exist?
- 2. We have $\left|\limsup_{\substack{\lambda \to 0 \\ \text{uniformly in } p \end{array}} v_{h,\lambda}(p) \liminf_{\substack{\lambda \to 0 \\ \lambda \to 0}} v_{h,\lambda}(p) \right| \to 0 \text{ as } h \to 0,$

Generalization: varying stage duration

- Now we allow different stage durations for different stages;
- There is a sequence $\{h_i\}_{i\in\mathbb{N}}$;
- Players act in times $h_1, h_1 + h_2, h_1 + h_2 + h_3, ...;$
- *i*-th stage payoff is $h_i g$ and *i*-th stage kernel is $h_i q$;
- Total payoff is now

$$\lambda \sum_{i=1}^{\infty} \left(\prod_{j=1}^{i-1} (1-\lambda h_j) \right) h_i g_i.$$

• The analogues of the above theorems hold in this more general model. We suppose now that sup $h_i \rightarrow 0$.

Stoch. games with perfect observ. of the state $\verb"ooooo"$

Games with stage duration 000000000

This is all.

Thank you!

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ • ⑦ Q @ 44/44