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Zero-sum stochastic games
with perfect observation of the state (1)

A zero-sum stochastic game (with perfect observation of the state)
is a 5-tuple (Q,/,J, g, P), where:

e () is a non-empty set of states;

® [ is a non-empty set of actions of player 1;

e Jis a non-empty set of actions of player 2;

® g:/ xJxQ— Ris a payoff function of player 1;

o P:lxJxQ— A(Q) is a transition probability function.

We assume that /, J, 2 are finite.
A(Q) := the set of probability measures on .
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Zero-sum stochastic games
with perfect observation of the state (2)

A stochastic game (2,1, J, g, P) proceeds in stages as follows. At
each stage n:

1. The players observe the current state wp;
2. Players choose their mixed actions, x, € A(/) and y, € A(J);

3. Pure actions i, € | and j, € J are chosen according to
xn € A(l) and y, € A(J);
4. Player 1 obtains a payoff g, = g(in,jn,wn), while player 2
obtains payoff —gg;
5. The new state wp11 is chosen according to the probability law
P(in,j,,,wn).
The above description of the game is known to the players.
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Strategies and total payoff

® Strategies o, T of players consist in choosing at each stage a
mixed action;

® The players can take into account the previous actions of
players, as well as the current and previous states.

* \-discounted total payoff: EY, <)\ S(1 - )\)i_lg,->;
i=1

® Depends on A € (0,1), initial state w, and strategies of the
players;

® Value vy : 2 — R:

(W) = supinf £2, (AD" (1- 1) g))

o =

= infsup £, </\ ST a- )\)i_lg;) .
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Limit of A-discounted game

va(w) = sup igf Es. ()\ Y- )\)"*lg;);

g
One can ask: what happens if players become more and more
patient? l.e., players are willing to wait a lot to obtain a big
payoff;
Mathematically, it means that A — 0;
Thus, one is interested in the uniform (in w) limit
limy_o va(w);
The limit always exists in the finite framework, but may fail to
exits in a more general setting.
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Kernel

e Kernel g: 1 x JxQ— R

. P(i,j,w)(w if w# W

i) = LS EW) e A
P(i,jw)(w)—1 ifw=udu

® Recall that P(i,j,w)(w’) is the probability that the next state
is ', if the current state is w and players’ actions are (i,);

® Hence the closer kernel g is to 0, the more probable it is that
the next state coincides with the current one.
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Stochastic games with stage duration

Consider a family of stochastic games G, parametrized by
h € (0,1];

h represents stage duration;

Players now play at times 0, h, 2h, ..., instead of playing at
times 0,1,2,.. ;

State space Q2 and action spaces / and J of player 1 and
player 2 are independent of h;

Payoff function g, of player 1 and kernel g, depend on h.
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Stochastic games with stage duration

® Payoff g, = hg;
e Kernel g, = hq;
® h=1: “Usual” stochastic game;

When h small, gy, is close to zero (players receive almost
nothing each turn), and gy, is close to zero (the next state
with a high probability will be the same).
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Comparison (1)

Stage 1 Stage 2 Stage 3
payoff g payoff g payoff g
kernel q kernel q kernel q ]
: > > Time

I I 1

Players choose actions at these times

Figure: "Usual” stochastic game: duration of each stage is 1
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Comparison (2)

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6
payoff hg payoff hg payoff hg payoff hg payoff hg payoff hg

kernel hq kernel hq kernel hq kernel hq kernel hq kernel hq
A A A A A A .

Time
0 h 2h 3h 4h 5h 6h

r"rr17 T 1 1 1 1

Players choose actions at these times

Figure: Stochastic game with stage duration h: stage payoff and kernel
are proportional to h
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Discounted games with stage duration

For a game with stage duration h, the total payoff is
(depending on the discount factor J, initial state w, and
strategies o, 7 of players)

o

e (1300 e )
k=1

Why such a choice? Easy explanation:

The total payoff is A-discounted game with stage duration 1 is
EZ (A e (1= XA g). The total payoff of A-discounted

game with stage duration his EX (32004 Ah(1 — Ah)k"1gy);

So, it may be seen as a game W|th discount factor Ah. l.e.,

the discount factor is proportional to h, just as the payoff g
and the kernel gq.
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Real meaning behind the total payoff of the game with
stage duration h

* Total payoff: E%_(AY_32,(1 — Ah)*(hgy));
® When h is small, the total payoff of the A-discounted

stochastic game with stage duration h is close to the total
payoff of the analogous A-discounted continuous-time game;
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Papers about games with stage duration

® “Stochastic games with short-stage duration” by Abraham
Neyman (2013);
® “Operator approach to values of stochastic games with

varying stage duration” by Sylvain Sorin and Guillaume
Vigeral (2016).
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Discounted games with stage duration (main properties)

® We denote by vj ) the value of the game with total payoff
By (M1 (1 = A " (gk)n);
® Main question: What happens with vj  when h — 07

Proposition (A. Neyman)
limp_0 vh ) exists and is a unique solution of a functional equation.

Proposition (S. Sorin, G. Vigeral)

limx_o limp_o v exists if and only if limy_,o v ) exists, and in
the case of existence we have limy_glimp_0 v\ = limy_50 v1 .
® |limy_ vi ) should be considered as the limit value of the
discrete-time stochastic game, whereas limy_,o limp_q vp »

should be considered as the limit value of analogous
continuous-time game.
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Stochastic Games with Public Signals (1)

® Now players cannot perfectly obseserve the current state;

® Players know the initial probability distribution on the states
and some information about the current state.
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Stochastic Games with Public Signals (2)

A zero-sum stochastic game with public signals is a 7-tuple
(A,Q,f,1,J,g,P), where:

® A s a non-empty set of signals;

® () is a non-empty set of states;

e f:Q — Alis a partition of Q;

® [ is a non-empty set of actions of player 1;

e Jis a non-empty set of actions of player 2;

e g:/xJxQ — Ris stage payoff function of player 1;

o P:lxJxQ— A(Q) is the transition probability function.
We assume that /, J, 2, A are finite.
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Stochastic Games with Public Signals (3)

The game (A, Q, f,1,J, g, P) proceeds in stages as follows. At
each stage n:

1. The current state is w,. Players do not observe it, but they
observe the signal o, = f(wp) € A and the actions of each
other at the previous stage;

2. Players choose their mixed actions, x, € A(/) and y, € A(J);

3. Pure actions i, € | and j, € J are chosen according to
xp € A(l) and y, € A(J);

4. Player 1 obtains a payoff g, = g(in, jn,wn), while player 2
obtains payoff —gp;

5. The new state wp11 is chosen according to the probability law
P(in, jn,wn). The new signal is ap11 = f(wpt1)-

The above description of the game is known to the players.
Players do not observe the payoff.
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An example of the partition function f

| y

There are 3 public signals, and f(wy) = f(w) = f(ws) = ¢,
f(wa) = f(ws) =3, f(we) = 1.
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Stage duration

We still can consider games with stage duration h in this new
setting;

Payoff g, = hg;
Kernel g, = hg;

State space (2, signal set A, partition function f, and action
spaces | and J of player 1 and player 2 are independent of h;

The total payoff is still EX, (AY 72, (1 — Ah)*(gi)n);
Vh, is the value of the game with such a total payoff.
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First result

Theorem

In the state-blind case, the uniform limit limp_,q vy \ exists and is a
unique viscosity solution of a partial differential equation

Av(p) = valp[Ag(i g, p) + (p* a(i,)), Vv(p))],

where

(p*q(i,))) (w) == pw) - q(i,j,w)(w);

w'eN

(F(-).8()) =D f(x)g(x)-

xeX
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Sketch of the proof

The proof is similar to the proof of analogous result in the
paper of Sylvain Sorin (2018) " Limit Value of Dynamic
Zero-Sum Games with Vanishing Stage Duration”;

Namely, we consider the family {vj \(P)}he(0,1)- It can be
proven that it is equilipschitz-continuous and equibounded;
Hence by the Arzela-Ascoli theorem the limit limp_,o v4 \(p)
has at least one accumulation point;

Afterwards we write the Shapley equation to prove that each
accumulation point is a viscosity solution of the above
differential equation;

It can be proven that this differential equation has a unique
solution.
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Limit value in games with public signals

We consider lim vy y;
A—=0
Even in finite setting, /{im Vhp A May not exist;
—0

First example of inexistence is in the paper of Bruno Ziliotto
(2016) “Zero-sum repeated games: Counterexamples to the
existence of the asymptotic value and the conjecture maxmin
=limv,";

A similar counterexample is in the paper of Bruno Ziliotto and
Jéréme Renault (2020) “Hidden stochastic games and limit
equilibrium payoffs”;

We now consider a game which is equivalent to the game
from the latter paper.
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Second result (1)

Theorem

There is a stochastic game G with public signals in which the
uniform limit limy_,0 limp_,0 vy x exists, but the pointwise limit

limy_0 v1,x does not exist.

Signal MINUS
Payoff —1
Player 1's actions: T,B, Q
Player 2's actions: L, R

P4
P5@
P6

Signal PLUS

Payoff +1

Player 1's actions: T, M, B
Player 2's actions: L, M, R, Q
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Second result (2)

The transition matrices for non-absorbing states:

L | R L R
T|w |w T Lo+ 1Liw w
State wy: LI™2 | State wy: p*1 T o%2 | %2
B | w | wg B wo 5wW1 + 5w
Q | ws | ws Q w3 w3
LI M| R | Q
State wy: T | wa | W5 | W5 | w2
I M| ws | ws | ws | wo
B | ws | ws | wa | wo
L M R Q
2 I ¥
State ws: T | 3wa + 30 ws had hd
SNy 2 1 *
ws 3W4 + 3Ws ws We
B ws ws %w4 + %w5 wg




Games with stage duration and public signals
00000000000e0000000000000000

Informal proof (1)

(:)”:1/:16 1} 1}4 1}2
mr o1 T T

Possible beliefs that the current state is wo

NN

Figure: Discrete case (i.e. stage duration is h = 1). Possible beliefs of
player 1 that the current state is w, if player 2 plays optimally. As A
becomes smaller, player 1 can wait longer and longer to achieve higher
probabilities.

® If the current signal is LEFT, then the smaller is the discount
factor A, the smaller is player 1 can make his belief that the
current state is wo;

® Analogously, if the current signal is RIGHT, then the smaller
is A\, the smaller is player 2 can make his belief that the
current state is ws;

® Because of that, there is an oscillation when A — 0.
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Informal proof (2)

Player 1 plays C until it gets

Player 1 immediately starts playing Q sufficiently close to p = 2/3.

N N
= ¥~ = p

0 2/3 1

Figure: Continuous case (i.e. h = 0) with small A\. With prob. p < 2/3 that
the current state is w2, player 1 should immediately start playing Q. Otherwise,
his belief p will start to increase until it becomes p = 2/3, which is bad for
player 1. With prob. p > 2/3 that the current state is w2, player 1 can very
quickly decrease his belief p until it becomes p ~ 2/3, which is good for him.

Prob.% P 1 PI"Obl
e Prob.1 r::i.:, ho h.2
p-te P p+h—hp p,hTP p p+h—hp

(a) p>2/3 and player 1 plays not Q- (b) p < 2/3 and player 1 plays not Q.
E(P-p) =3(h—hp)+3-=2=  E(G—p)=1i(h—hp)+1 o=
#(2—3p) <0, thus if A is small, then 2(2—3p) > 0, thus player 1 prefers to
player 1 prefers do not play Q until p play Q until the state changes.

is close to 2/3.
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Informal proof (3)

Thus very there is a threshold p = 2/3 which player 1 cannot
Cross;

So, the state is going to get absorbed with prob. 2/3;

Similarly, there is a threshold p = 3/4 which player 2 cannot
Cross;

So, the state is going to get absorbed with prob. 3/4;
Thus there is no oscillation as A — 0.
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The limit limy_, v1 ) does not exist (1)

A (more general) zero-sum stochastic game with public signals is a
7-tuple (A, Q, f,1,J, g, P), where:

® Ais a non-empty set of public signals;

® () is a non-empty set of states;

® [ is a non-empty set of actions of player 1;

e Jis a non-empty set of actions of player 2;

® g:/xJxQ — Ris stage payoff function of player 1;

P:lxJxQ— A(Qx A) is the transition probability
function.
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The limit limy_,o v1 ) does not exist (2)
Auxiliary game G with discounted value v).

(C,1/2,a) (C,1/3,a)
@ (Q,1,0) (Q,1,0) @

(C,1/4,a) w 4’ (C,2/9,a)
(C,1/4,a) @— C7 (C,1/9,)
(C,1/2,pB) (C,2/3,pB)

Only (Q18) (@.1,8) Only
Player 1 Player 2
acts here acts here

Payoff —1 Payoff +1

The arrow from state s; to the state s, with label (X, p,v) tells that if
player that controls state s; chooses action X, then with probability p he
goes to state s, and receives signal ~.
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The limit limy_, v1 ) does not exist (3)

Theorem
There is a game in which the uniform limit limy_,o limp_,0 vp »
exists, but the pointwise limit limy_,qg v1 » does not exist.

® One can prove that vy(p) = v x(p). (e.g. by writing the
Shapley equation for both games).
® The article "Hidden stochastic games and limit equilibrium
payoffs" (Jérdme Renault and Bruno Ziliotto, 2020) proves
that /\Iimo Vx(p) does not exist.
_>
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The limit limy_q limp_o v\ exists (1)

D
2 o
()

signal MINUS Signal PLUS
Payoff —1 Payoff +1

,L Game G with two public signals ,L

Prob. 1 —p_ @ @ Prob. 1 —p,
Prob. p,@ @ @ @Prob. P

(a) State-blind “half-game” (b) State-blind “half-game”
G~ (k=), where k_ € [-1,1]. G"(ky), where k. € [-1,1].
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The limit limy_q lims_o v\ exists (2)

® We only need to find the values v, , (k, p) and v;f/\(k,p) of
these two “half-games”!

® In this case we can deduce limy_,q limy_,q vp ) for initial states
wy and ws by solving a system of two equations with variables
k_ and k;. We have Vha(w2) = VA (Vha(w5), w2)
Vi (ws) = vy (Vi (w2), ws)
® Later we can find limy_,g limp_0 vh x(p) for any initial p by
replacing k_ or ki with values that were just found.
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The limit limy_q limy_g Vh\ exists (3)
Denote by v, ,(k, p) the value of the game G~ (k) with initial
state wy (prob. p) or wy (prob. 1 — p);
Lemma

For any p € [0,1] and any k € [—1,1] we have

Vialk, p) = (k+1)v, (0, p) + k.

Proof: Since k > —1, any optimal strategy in the game G~(0) is
also optimal in the game G~ (k). Thus there exists a € [0, 1] such
that we have v, , (k,p) = ak + (—1)(1 — «). By taking k =0, we
obtain 7

via(0,p) = -1+ a <= a=v,,(0,p) + 1.
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The limit limy_q limp_0 v\ exists (4)
The main question: how to find il7im0 v, (0, p)?
H b

We know that ATO V,Z)\(O, p) is a unique solution of

Av(p) = valyxy[Ag(i,j, p) + (p* q(i,)), Vv(p));

It is not clear how to find the solution of this equation;

However, if we take

+\ 4042,

W(p) L { I1)+/\ a3 pr < 4043
" (4)) 4)/3 4A42

-1 + (1+>\)(3+4)\)1+ (4X/3) (3P 2) / ) if P Z AN+3"

then we can verify that it is a classical solution of this
equation.

We can do the same with the value v,", (k, p) of another
“half-game” G (k).
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How to guess w(p)? (1)

(C1/2,0)
(Q) 1- h) ﬂ)
v/

Prob.!
(C.2~ h)/4,0) b Prob.
(@19 Nh{*
player-maximizer hp h=h
payoff —1 on the left pP- 2 P Pt P
(a) Auxiliary game (b) Prob. p that the current state is wo>

The arrow from state s; to the state s, with label (X, p,) tells that if
player plays X, then with prob. p he goes to state s, and receives signal
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How to guess w(p)? (2)
® This new game is equivalent to G~ (0);
¢ Denote by w(p) its value;
® Shapley equation:
w(p) = —Ah+ (1 — Ah) max{ —hp + (1 - h)w(p);
~—

Player 1 plays Q,  Player 1 plays Q,

the signal is the signal is 8
1 hp 1
- L B h— hp) .
2W<p 2>+2W(p+ P)}
—_————
Player 1 plays C,
Pli)f;iénzuaiyssg’ the signal is 8

e there is p* € [0, 1] such that for p < p* player prefers to play
Q, and for p > p* player prefers to play C. Thus for p < p*
—Ah+ (1= Xh) (=hp+ (1 = h)w(p)) = w(p) <~
(PA=1Dp—X hs0o p+A
w(p) = - :

1+(1—-h)A 14X
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How to guess w(p)? (3)

p* is an approximate solution of the equation

(PA—-1)p—A _

SR N Ty T
(/ﬂ—l)(/D—%)—A (hA—1)(p+h—hp) — A
2(1+ (1— h)A) 21+ (1—h)A)

_ 4X2-2)h h—0 4x42
T 4X4+3-TXh 4N¥3°

from which p*
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How to guess w(p)? (4)

® For p > p*, w(p) is a solution of the equation (in f(p))

f(p) = —Ah+ (1 — Ah) (;f <p— h;) + %f(p-i— h— hp)) .

® if w(p) is differentiable, then

2
T
N—

— AR H(1-AR) (; (wie) ~ 500 w(0) )43 (p) + (1 - hp)w'(p>>>+o(h).

e Thus we have for small h

{AW(p) ~ =X —gpw'(p) + 3(1— p)w/(p), if pe (p*,1);

w(p*) = =232
from which
4 4)\/3 _
w(p) = -1+ () (3p—2)""°.

(1+ N3+ aA)HEA)
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Theorem

There is a stochastic game G with public signals in which the
uniform limit limy_,q limp_0 v\ exists, but the pointwise limit
limy_o vy ) does not exist.

Open question: For the considered above game G, can we say that

1. For any fixed h € (0, 1], the limit )I\imo Vvh,x does not exist?
—)

2. We have |limsup vy x(p) — liminf vy z(p)| — 0 as h — 0,
A—0 A—=0
uniformly in p?
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Generalization: varying stage duration

Now we allow different stage durations for different stages;
There is a sequence {h;}ien;

Players act in times hy, hy + ha, h1 + ho + h3, ..

i-th stage payoff is h;g and i-th stage kernel is h;q;

Total payoff is now

00 i—1
MDA = 2k | hiei
i=1 \j=1

The analogues of the above theorems hold in this more
general model. We suppose now that sup h; — 0.



Games with stage duration and public signals
000000000000000000000000000e

This is all.

Thank you!
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